Buy tickets now
An event powered by
Search
Close this search box.

New material inspired by chain mail can stiffen on demand

The material can transform from a foldable, fluid-like state into specific solid shapes under pressure

Researcher from Singapore and California are to be praised for this valuable new material

 

Scientists from Nanyang Technological University, Singapore (NTU Singapore) and the California Institute of Technology (Caltech), United States, have developed a new material inspired by ‘chain mail’ that is flexible like cloth but can stiffen on demand. 

The fabric

The lightweight fabric is 3D-printed from nylon plastic polymers and comprises hollow octahedrons (a shape with eight equal triangular faces) that interlock with each other. When the soft fabric is wrapped within a flexible plastic envelope and vacuum-packed, it turns into a rigid structure that is 25 times stiffer or harder to bend than when relaxed. The physical principle behind it is called “jamming transition”, similar to the stiffening behaviour in vacuum-packed bags of rice or beans.

A material made from linked octahedrons I Credits: Caltech

Amazing potential 

The material has potential applications as a smart fabric for exoskeletons, or as an adaptive cast that adjusts its stiffness as an injury heals, or even as a deployable bridge that could be unrolled and stiffened, according to Chiara Daraio, Caltech’s G. Bradford Jones Professor of Mechanical Engineering and Applied Physics and corresponding author of a study describing the material that was published in Nature on August 11.

“These fabrics have potential applications in smart wearable equipment: when unjammed, they are lightweight, compliant, and comfortable to wear; after the jamming transition, they become a supportive and protective layer on the wearer’s body,” says Wang, now an assistant professor at Nanyang Technological University in Singapore.

In the example of a bridge that could be unrolled and then driven across, Daraio envisions running cables through the material that then tighten to jam the particles. “Think of these cables like the drawstrings on a hoodie,” she says, noting that she is now exploring this cable scheme and other possibilities.

It’s all about motivation

“We wanted to make materials that can change stiffness on command,” says prof. Daraio “We’d like to create a fabric that goes from soft and foldable to rigid and load-bearing in a controllable way.”

An example from popular culture would be Batman’s cape rom the 2005 movie Batman Begins, which is generally flexible but can be made rigid at will when the Caped Crusader needs it as a gliding surface.

A step forward

Materials that change properties in similar ways already exist all around us, Daraio notes. “Think about coffee in a vacuum-sealed bag. When still packed, it is solid, via a process we call ‘jamming.’ But as soon as you open the package, the coffee grounds are no longer jammed against each other and you can pour them as though they were a fluid,” she says.

Individual coffee grounds and sand particles have complex but disconnected shapes, and can only jam when compressed. Sheets of linked rings, however, can jam together under both compression and tension (when pushed together or pulled apart). “That’s the key,” Daraio says. “We tested a number of particles to see which ones offered both flexibility and tunable stiffness, and the ones that only jam under one type of stress tended to perform poorly.”

A long way of researching and testing

To explore what materials would work best, Daraio, together with former Caltech postdoctoral researcher Yifan Wang and former Caltech graduate student Liuchi Li (PhD ’19) as co-lead authors of the Nature paper, designed a number of configurations of linked particles, from linking rings to linking cubes to linking octahedrons (which resemble two pyramids connected at the base). The materials were 3-D printed out of polymers and even metals, with help from Douglas Hofmann, principal scientist at JPL, which Caltech manages for NASA. These configurations were then simulated in a computer with a model from the group of José E. Andrade, the George W. Housner Professor of Civil and Mechanical Engineering and Caltech’s resident expert in the modeling of granular materials.

“Granular materials are a beautiful example of complex systems, where simple interactions at a grain scale can lead to complex behavior structurally. In this chain mail application, the ability to carry tensile loads at the grain scale is game changer. It’s like having a string that can carry compressive loads. The ability to simulate such complex behavior opens the door to extraordinary structural design and performance,” says Andrade.

The engineers applied an outside stress, compressing the fabrics using a vacuum chamber or by dropping a weight to control the jamming of the material. In one experiment, a vacuum-locked chain mail fabric was able to support a load of 1.5 kilograms, more than 50 times the fabrics’ own weight. The fabrics that showed the largest variations in mechanical properties (from flexible to stiff) were those with larger average number of contacts between particles, such as linked rings and squares, akin to medieval chain mail.

 
When stiffened, the material has the potential to act as a sturdy bridge I Credits: Caltech

In parallel work on so-called smart surfaces, which are surfaces can change shapes to specific configurations at will,

Daraio, together with postdoctoral scholar Ke Liu and visiting student Felix Hacker, recently demonstrated a method for controlling the shape of a surface by embedding networks of heat-responsive liquid crystal elastomers (LCEs), thin strips of polymer that shrink when heated. These LCEs contain stretchable heating coils that can be charged with electrical current, which heats them up and causes them to contract. As the LCEs contracted, they tugged at the flexible material into which they were embedded and compressed it into a predesigned solid shape.

That work, which was published on April 7, 2021 in the journal Science Robotics, could be useful for remote collaboration where a physical component of the collaboration is necessary, medical devices, and haptics (which use technology to simulate physical sensation for virtual reality). Next, the team plans to miniaturize and optimize the design of both structured fabrics and smart systems to get them closer to practical applications.

source: Caltech Edu. Read original article by Robert Perkins here

Cover photo: Caltech Edu


 

Maker Faire Rome – The European Edition has been committed since eight editions to make innovation accessible and usable to all, with the aim of not leaving anyone behind. Its blog is always updated and full of opportunities and inspiration for makers, makers, startups, SMEs and all the curious ones who wish to enrich their knowledge and expand their business, in Italy and abroad.

Follow us, subscribe to our newsletter: we promise to let just the right content for you to reach your inbox

 
 
 
Promoted by
SUPPORTED BY
IN COLLABORATION WITH
with the support of
With the patronage
in partnership with
Thanks to
in partnership with
Main Partner
Gold partner
Silver partner
Bronze partner
Cybersecurity Expert
Official Car
main media partner
MAIN MEDIA partner
press & digital
media partner
technical media partner
media partner
Technical media partner
PADEL TECHNICAL PARTNER
with the free patronage of

testimonials